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Abstract—In this paper, we introduce an agent for autonomous
driving in a semi-realistic simulation environment, Microsoft
AirSim. We outline past work in the field and explore the
latest machine learning methods for processing images and
controlling the agent. Frameworks in computer vision such as
Mask-RCNN, YOLO and U-Net are implemented. Agents using
imitation learning through behavioral cloning and reinforcement
learning with Deep Q Networks are applied in the environment.
A successful implementation of imitation learning is presented for
driving straight and keeping in the central lane. Deep Q Networks
are used to facilitate driving in 4 separate environment where it
optimizes for both following roads and avoiding obstacles.

Index Terms—Autonomous Driving, Imitation Learning, Be-
havioral Cloning, Deep Q Learning, Self-driving Agent, Object
Detection, Semantic Segmentation, Computer Vision

I. INTRODUCTION

The goal of this project is to train an agent that learns
to autonomously drive a car. This is an important area of
research being studied by many companies, universities,
and online communities. The real-world implications of
this emerging field are huge, as approximately 1.35 million
people die in road crashes each year [1]. Autonomous driving
can make roads safer, helping to reduce the number of
avoidable accidents by minimizing human error in driving.
It will allow those with disabilities and senior citizens to
travel independently and safely. It can also reduce the cost of
transportation, by removing reliability on human drivers.

Simulation is a key area in self-driving research, and using
realistic environments helps algorithm research and develop-
ment where customized test situations can be forced without
the risk of real-world consequences. We have been using
Microsoft AirSim [2] for our project, a simulation environment
created for autonomous driving research so that multiple
objectives can be achieved. Some objectives implemented are:
following roads, longest distance and time without crashing,
driving with moving pedestrians. We want to build on AirSim’s
framework, training Computer Vision algorithms for percep-

tion and creating agents based on reinforcement learning and
imitation learning to perceive and act in these environments.

II. AUTONOMOUS DRIVING PIPELINE

The process of achieving autonomous driving includes many
different tasks, which can be divided into either perceiving and
understanding the scene, or planning and making decisions.
We adapt the general autonomous driving pipeline [3] to
explain these tasks in further detail in the context of our
project.

Fig. 1. Autonomous Driving Pipeline

a) Sense: The first step includes using the car’s
equipment and sensors to perceive the agent’s environment.
The car contains cameras in different positions which allow
it to identify the road, lanes and objects around it. LiDAR
and RADAR sensors can aid with perceiving depth and
identifying how fast an object may be moving. They are also
especially useful during poor weather conditions or in the
dark, where the camera visibility may be impaired.

b) Computer Vision (CV): Once the data has been
collected from the car’s sensors, the next step is to use it
to help the agent make sense of its surroundings. Images
taken by cameras can help us accomplish tasks such as
lane finding, estimating road curvatures, detecting traffic
lights, and recognizing obstacles through object detection and
classification. We can use a number of CV algorithms such
as RCNNs, Single Shot Detectors and YOLO networks to
perform image segmentation and object recognition.



c) Localization and Mapping: The agent must next
identify how to figure out its position in the world. This
involves mapping the environment and then localizing
the current position of the vehicle within the map. This is
important because it allows the agent to move around different
locations within the environment and also understand what
the world around it looks like.

d) Path Planning and Policy: The next step after
localization is to create a trajectory to travel from one point
in the environment to another. In this phase, the agent can
also observe the objects around it and decide what actions
they may take, thereby formulating its own action in response.
We can test the agent against objectives such as, how long it
takes to get from one location to another and how far it can
travel within a certain time period.

e) Control: Finally, the agent must navigate the
movement of the car by understanding what controls must be
applied to achieve the motion it desires. Control is necessary
to decide actions such as the speed of the vehicle, steering
angle, acceleration and braking.

In any autonomous vehicle project each of these tasks
has to be handled. We ensure that our project accounts for
all of these tasks by using the simulation environment tools
combined with our implementing for these tasks.

III. RELATED WORK

A. Computer Vision

Object recognition is a task which has significantly
advanced in recent years due to the rise of neural networks.
This has important applications in autonomous vehicles as the
car must accurately recognize objects near the it in order for
it to take actions. Extending the traditional CNNs, R-CNNs
extract a set of object candidate boxes that are rescaled and
passed to an ImageNet model, which is further qualified by
a linear SVM classifier [4]. This architecture saw a lot of
improvement on its predecessor but has an obvious drawback
of calculating redundant feature computations in overlapped
boxes. This drawback is taken care of by the Fast R-CNN
[5] model resulting in faster predictions with comparable
accuracy. Although the architectures make attempts to
improve accuracy and time to predict, they don’t scale as
viable solutions for the task of autonomous driving because
they are two-stage detectors. These methods conduct the first
stage of region proposal generation, followed by the second
stage of object classification and bounding box regression. A
One-Stage Detector such as You Only Look Once (YOLO) [6]
can handle object classification and bounding box regression
concurrently without a region proposal stage resulting in
faster predictions.

Semantic segmentation is also important for autonomous
vehicles. We look at U-Net, a CNN which was originally

designed for biomedical image segmentation [7] to train
networks with less data than typical CNNs. They use data
augmentation effectively and show that the quality of seg-
mentation is high using fewer training samples. The task of
segmentation can be directly translated to self driving for
identifying surfaces such as roads.

B. Imitation Learning

Imitation Learning (IL) is a supervised machine learning
technique in which actions are recorded and a neural network
learns to copy these actions. Behavioral cloning is a subset
of IL where an agent’s behaviour is replicated by a neural
network [8]. Using this method, researchers have imitated
many behaviors including that of an ant in a unity simulation
and a 2d car on a hill.

NVIDIA created an end-to-end learning model using CNNs
[10] to map pixels from a single front-facing camera to steer-
ing commands. They set up a Data-Acquisition Car which has
three cameras installed: left, right, and center. These cameras
work in tandem with the steering wheel. The cameras record
what the vehicle sees whenever the steering angle is changed,
that also helps to learn and imitate the driver. The CNN is
then trained on these images and steering inputs and when
provided with an image can reproduce the optimal action.

C. Reinforcement Learning

Reinforcement Learning (RL) is a subset of machine
learning algorithms whereby a computer program learns from
experience to improve its performance at a specified task.
Machine learning algorithms are often classified under one
of three broad categories: supervised learning, unsupervised
learning and reinforcement learning. In the RL paradigm, an
autonomous agent learns to improve its performance at an
assigned task by interacting with its environment. RL requires
an environment where state-action pairs can be recovered
while modeling dynamics of the vehicle state, environment
as well as the stochasticity in the movement and actions of
the environment and agent respectively.

One of the main challenges in RL is managing the trade-
off between exploration and exploitation. To maximize the
rewards it receives, an agent must exploit its knowledge by
selecting actions which are known to result in high rewards.
On the other hand, to discover such beneficial actions, it has
to take the risk of trying new actions which may lead to
higher/lower rewards than the current best-valued actions for
each system state. In other words, the learning agent has to
exploit what it already knows in order to obtain rewards, but
it also has to explore the unknown in order to make better
action selections in the future.

A novel deep reinforcement learning model, Deep Q
Networks (DQN), combining RL with deep learning. In
summary, the goal of the network is to select a set of actions
that maximize cumulative future rewards. Recently, deep
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learning and RL based local planners started to emerge as
an alternative. Fully convolutional 3D neural networks can
generate future paths from sensory inputs such as LiDAR
point clouds. Planning a safe path in occluded intersections
was achieved in a simulation environment using deep RL.
In this, we have explored different ways and approaches of RL.

1) Monte Carlo and Temporal Difference Methods: In
the Monte Carlo method, the agent calculates the maximum
expected future reward by collecting all the rewards from all
states at the end of the game when it goes to any particular
terminal state or when it reaches the maximum steps threshold
per game. Whereas in Temporal Difference methods, the
agent updates the maximum expected future reward at each
step. That is, it will update the estimated value at every state
by using the information from the experience it had after
taking an action on that state [11].

2) Model Based and Model Free: In model based the
agent tries to understand the environment and create a model
of it, it tries to understand and build the transition function
that tells the amount of reward the agent gets for different
transitions between states and also tries to learn the reward
function from the experiences it had through the process of
game playing. The agent uses the model as a reference and
takes the next steps accordingly. In model free technique, the
agent tries to learn the policy from the interactions it had in
the game at different states. We could use multiple algorithms
like policy gradient and Q-Learning for the agent to learn the
policy directly without construction of a sample model [11].

After exploring all the above different methods and
approaches to RL, we have narrowed down to a temporal
difference method, Q-Learning associated with neural network
(DQN) for this problem.

IV. ENVIRONMENTS

Finding suitable simulation environments for autonomous
driving was an important first step. A number of environments
were assessed including racing game environments,
toy simulators and environments made specifically for
experimenting with self-driving cars. In selecting our
environment, trade offs between installation requirements, the
complexity and features offered were important in influencing
our decision. The majority of the simulators are based on
either Unity or Unreal Engine with the latter not facilitating
virtual machine installation. Given that there are multiple
objectives of the project, choosing an environment such as a
racing game did not provide the flexibility to create custom
challenges. We opted to explore open-world autonomous
driving simulators such as Carla, Voyage Deepdrive, Microsoft
AirSim, Duckietown, and Udacity’s Self-Driving Simulator.
After exploring all these environments, we narrowed down to
AirSim. More detail on these environments can be found in

the Engineering Design Document (EDD).

Microsoft AirSim was the environment we selected, it is an
open-source simulator using Unreal Engine for self-driving
and Quadcopter research. It provides pre-built semi-realistic
environments such as City and Neighborhood maps. It also
offers the functionality to create your own environment from
a template where static or dynamic objects can be created.
The main limitation of the pre-built environments is that
they only work on Windows machines. Other useful features
include a recording log consisting of images and metadata
such as speed, steering angle, position and acceleration. A
Python API is also available to control the car autonomously
with template environments and algorithms. This API is
where we implement our agent for control of the car.

V. METHODS

A. Object Detection

1) Mask-RCNN: Mask R-CNN [12] is a progressively
improved technique, from R-CNN, Fast R-CNN, Faster
R-CNN to Mask-RCNN, which uses either of the backbone
architectures to create feature maps over the entire image,
ResNets with Faster R-CNN and Feature Pyramid Network
(FPN) also with Faster R-CNN, where the latter is observed
to perform better.

The whole architecture can be broken down into two
segments, bounding-box recognition (classification and
regression) and mask prediction, which is applied to every
region of interest. The region of interests are also passed to
its pool layer and align layers where the images are resized,
bi-linear interpolation is applied to get the precise dimensions,
the output is later sent to the backbone architecture. Mask-
RCNN also has a special layer called Region Proposal
Network which scans the FPN and generates two outputs, an
anchor class, and bounding box specifications. Mask R-CNN
makes pixel-wise dense predictions using masks for all the
objects that are predicted in the image. The images in Figure
2 depict the masks created over cars and pedestrians in
AirSim environment.

2) You Only Look Once (YOLO): For an autonomous
self-driving car, it is important to not only consider where the
objects are located relative to the car but also what the objects
are. For example, if the car is driving in the direction of a
pedestrian, it makes sense to stop and wait for the pedestrian
to cross. However, if the object is a parked car, the agent is
better off driving the car around the parked obstacle.

This is a complex task and can take some time. The
YOLO CNN [6] works well for the purpose of object
recognition in real-time. It can look at an image only once
and recognize objects with high speed and accuracy. The
way this works is that the input image is split into a grid
of cells. For every object in the image, there is a grid cell
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Fig. 2. Image Segmentation

within which the center of the object is located, that grid
cell is responsible for the prediction of the object. Each
grid cell then predicts bounding boxes by using the (x,y)
coordinate of the box center, the height, width, and confidence.

The YOLO v3 architecture [6] uses Darknet-53 as the
backbone and includes 53 layers. This architecture also
improves from previous versions of YOLO by solving
the vanishing gradient problem through skip connections.
Vanishing gradient occurs in deep neural networks when the
change in the gradient is so small that the weights are no
longer updated and the training effectively stops. With skip
connections, the output of one layer is propagated to the next
few layers instead of just one. Then during backpropagation,
the value of the gradient is maintained in these previous
layers. This is because we are not multiplying the gradient
with a fractional value at each and every layer, thereby
preventing the gradient from becoming very small as we
approach the earlier layers.

The grid cell also outputs the class probabilities to classify
an object once it is detected. This probability is given as
P(Class(i)

Ob ject ), i.e. given that an object is present, it gives us the
probability that it belongs to class i.

Along with object recognition, we have also created a
metric to perceive relative distance from the camera. We
calculate this closeness as (1), where distance is the length
of the perpendicular drawn from the bottom center of the
bounding box. Since the City environment consists of a flat
landscape, we can assume that the longer the perpendicular,
the farther away the object is. We also take area into
consideration, as objects that are closer have a larger area.

c = k
(Area)

(Distance)
(1)

To avoid obtaining a very large closeness value for boxes
with large areas, we multiply with a constant k which lies
between (0,1). So we have chosen the value of k to be 0.1 to

Fig. 3. YOLO V3 Architecture

normalize the value of closeness.

This information can be useful for the car to determine
which object is more likely to be collided into. We use this
YOLO model to modify the reward function of our RL agent
to consider closeness to neighboring obstacles so the agent
minimizes its chances of crashing.

Figure 4 depicts the bounding boxes and classification
done by the YOLO v3 model. The lines in green are the
perpendiculars which help determine how close an object is
to the car.

Fig. 4. Classification with Bounding Boxes - YOLO V3

B. Semantic Segmentation

We investigate how we can tackle the task of road seg-
mentation with U-Net [7]. U-Net is named due to its typical
representation in architectural diagrams in the shape of a U.
There are two paths to the U-Net, contraction and expansion.
The first (contraction) utilizes an encoder which is a stack
of convolutional and max pooling layers and the second (ex-
pansion) is an expanding path decoder which enables precise
localization with transposed convolutions. It is an end-to-end
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fully convolutional network (FCN). This network architecture
is detailed in figure 5.

Fig. 5. U-Net architecture

We used a pre-trained U-Net model for road segmentation
on a dataset of Carla images on Kaggle [9]. We replaced
the last fully connected layer of the network and freezing
the rest of the layers by using Keras, we were able to use
what it had already learnt and retrain the network on 60
images that we hand labelled from AirSim. We retrained the
network for 100 epochs with a batch size of 4 and used early
stopping to ensure we are not overfitting our small training
data sample. For a comparison between the original pre-trained
network performance and that after transfer learning, refer to
the semantic segmentation section in the EDD.

C. Imitation Learning

IL will mimic the player’s driving patterns using a
supervised model. The player’s data is recorded from the
AirSim environment and the corresponding images paired
with actions are stored for a stack of 5000 images. We have
built two models with different architectures and each model
is explained in detail below:

1) Steering Angle Prediction Model (Model 1):
• Pre-processing: The image is resized, and the pixel

values in them are normalized between 0 and 1. The
brightness level is also set at 0.4 for the entire image.

• CNN Model in figure 6. The network is trained
for 500 epochs, batch size 32, with a learning rate of
0.0001, using a Nadam optimizer with a beta value of 0.9.

• Predictions: The predicted values from the model are
approximated to +1,-1 and 0. These values are used
to control the agent through the python API, for the
specific snapshot image taken when the agent interacts
with the environment.

2) Steering Classification (Model 2): The alternative
method we implemented has a 3 class softmax objective
function to classify steering input into distinct categories.
We trained another CNN to classify steering input, this did

Fig. 6. Model 1: Steering Angle Prediction Regression Model
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not work on the first try. An unforeseen problem was that
the task of keeping in lane gave us an unbalanced dataset of
2000 images that has over 10 times more data for straight
input compared to left or right steering.

Our initial effort resulted in the CNN, shown in figure
7 finding a local minimum, predicting straight for every
example. Although achieved a high accuracy of over 0.9,
the car did not make any turns in the environment. We
investigated ways to fix this problem, we could either impose
a greater penalty for incorrectly predicting left or right with an
asymmetric loss function or we can undersample the number
of straight examples so we have a balanced dataset. We opted
for the latter and used data augmentation, normal procedures
of flipping around axes, rotating, translating and scaling would
all randomly generate brightness samples as shown in figure
8 to increase the amount of training data from 900 to 9000
images.

Fig. 7. Steering Angle Classification Architecture

After running this model, we found that it was able to
keep in lane when the road surface had two distinct lane
lines. When the agent crossed intersections, the learnt pattern
on the road was obscured and the agent frequently went
out of lane and crashed. In order to correct this problem
we collected more training data from the dataset we had
originally undersampled from by running the simulation with
human input. When the CNN was trained with this extra data,
it was able to go over intersections consistently.

Fig. 8. Brightness Augmentation

D. Reinforcement Learning

Deep RL is used to train a car to navigate a 3D space
in realistic virtual environments autonomously. Using this
principle, the training of the car happens via rewards and
punishments, the car is expected to learn to drive itself
maximizing the reward. This means the car is given high
rewards for good driving and and given punishments for
bad driving in a well constrained reward function the car
should exhibit the behavior of good driving. We adopt DQN
Mnih [13], a deep RL method, originally from DeepMind’s
experiments which achieved superior results to human
performance at Atari games. As we are working on AirSim’s
environment, it contains a vision based baseline RL agent
using DQN to control the car.

There are many ways to update Q-values in the Q-
learning algorithm. In our scenario, building an agent for an
autonomous driving car, where the input data with respect to
each state of the environment is neither simple nor limited.
We take input data in the form of a set of frames as each
state can be described by an image (frame) from the camera
at any particular point of time in the simulation. Therefore,
using value-iteration to update the Q-values is an expensive
process due to size and form of the input state. This leads us
to the option where we update Q-values using deep learning
to develop a DQN. The steps of the algorithm are as follows:

• In the first step, we initialize the replay memory and
set its capacity. We now expand upon the concepts of
experience replay and replay memory which are used
during the training process of DQN. During the training
process, we store the agent’s experiences at each time
step and store in a memory called replay memory. At
each time step, we store a tuple of values, which includes
the current state of the environment, the action that was
taken in that state, and the next state of the environment
along with reward given to the agent for this action.
This gives us a summary of the agent’s experience at
that time step. Since we cannot store all the experiences
at every time step we set a size N. Every time a new
experience is observed we update our replay memory by
replacing this with the oldest experience in the memory.
So we only store the last N experiences. The process of
gaining experiences and later sampling these from replay
memory for training is called experience replay.

• Next, we initialize the weights of the neural network
similar to a regular one that is used to approximate a
function. And we start the game (also called an episode)
by initializing its starting state.

• At each time step in the episode, we select an action
and execute it in a simulator. There are two ways to
choose an action at any time step, we can either take
a random action or take the best step considering the
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information we have from the environment. In the initial
time steps, we don’t have much information about the
environment so it is okay to choose random action
whereas in the later stages we have more information
about the environment compared to the initial stages so
it is not preferable to take random actions. Since it is a
little ambiguous as to which action is optimal at each
step, we employ E psilon greedy strategy.

• Here, Epsilon is a floating-point value that ranges from
0 to 1. We initialize it to some value within its range by
restricting it with a min and max value. Then we choose
a random number which also lies between (0,1). If the
chosen value is less than the epsilon value, then we
choose a random action (exploration), if it is more than
the epsilon value then we credit the present information
and choose an action based on that (exploitation). As
we run the simulation multiple times or pass through
multiple episodes for training, we update the epsilon
value using the epsilon decay rate. Initially, the epsilon
value is close to 1, so the percentage of random actions
will be higher than calculated actions. As the training
goes on, the epsilon decays, the percentage of random
actions decreases, and the percentage of informed actions
increases. This is called exploration versus exploitation.

• Now, the chosen action in the previous step is executed
and then we observe the next state along with the reward
and store the experience in replay memory.

• In the next step, we sample a random batch from the
replay memory, preprocess it, and feed it to the neural
network also called a policy network as it updates the Q-
values (2) to find the optimal policy. We should note that
we take a random sample and not a list of sequential
experiences to avoid the high correlation between the
experiences which will lead to very inefficient learning.
This is also one of the main reasons for using replay
memory.

qnew(s,a)=(1−α) q
(
s,a
)︸ ︷︷ ︸

old value

+α

learned value︷ ︸︸ ︷(
Rt+1 + γ max

a1
q∗
(

s1,a1
))

(2)
Where,
α - Learning rate
γ - Discount rate
S - Current State
S1 - New State
R - Reward received
a - Action taken
a1 - Action on new state

• Before feeding the data to the network we preprocess,
if the data is image data, we use gray scale conversion,

cropping, scaling, etc depending on the input data we
use. Then we give this to the network, the input is a
state in the form a stack of frames instead of a single
one because it gives context to the environment when
the objects or the agent in it is moving.

• Then for each state-input, the network will evaluate and
give out the Q-values for all possible actions on that state.
As in a normal deep learning network, we calculate the
target Q-value for that state using the Bellman equation
(3) and get the loss. We do a second pass to the policy
network on the next state to get Q-value for all the
possible actions of that state and then get the max-value
to calculate the target Q-value.

Q(s,a) = E

[
Rt+1 + γ max

a1
q∗
(

s1,a1
)]

(3)

• After obtaining the loss value, we use gradient descent
and back propagation to update the weights and reduce
the loss, we repeat the process for each time step of
an episode until we reach a final state. In this way, we
train the network with a set number of episodes before
getting the final matrix of Q-values for the self-driving
agent [14].

For the autonomous agent provided by AirSim, the neural
architecture follows that provided by Mnih et al [15]. It
contains 3 convolutional layers and 3 max pooling layers and
2 dense layers with rectified linear unit (Relu) activation to
output the Q values for each possible action as show in in
figure 9. The network takes the images from the car camera
as input and transforms them into states that it can then
compute Q values for. In AirSim’s baseline Deep Q learning
agent, the rewards are calculated on the basis of speed and
distance from set paths. If the car exceeds the maximum
speed limit or strays from the center, it receives a negative
reward.

Fig. 9. AirSim DQN CNN architecture

1) DQN Neighborhood Environment Agent: Training a
deep RL model from scratch is a resource intensive task which
requires powerful computational resources and time, especially
when dealing with an environment with thousands of possible
states and actions. We decided to create a baseline for a RL
agent by applying transfer learning to the model established
by Microsoft’s Autonomous Driving Cookbook. The network
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model is a three layer Convolutional Neural Network that is
closely modeled after Google DeepMind’s Deep Q-Learning
[13] The reward function is very simple and takes into account
the position of the car with respect to the center of the nearest
road. It is designed to make the car learn to drive on the
road instead of veering off-lane, a task which is fundamental
to autonomous driving. It obtains the car position from the
AirSim API and awards the vehicle a higher reward for driving
within a threshold distance from the center of the road and
penalizes it for colliding into obstacles. The distance reward
is calculated by using an exponential function which considers
the product of the distance from the road and the decay rate,
which determines the rate at which the reward decays for the
distance. For this reason, it is important to note that all the
rewards are positive and range between [0,1].

distanceReward = e−(distance . decayRate) (4)

The performance within the first few hours of training was
suboptimal and the car kept crashing into nearby vehicles
and houses. After approximately 25 hours of training, the
model achieved a loss of 0.026 and the car learnt to drive
smoothly on a straight road and take turns to avoid crashing
into a dead end. Figure 10 shows the loss decreasing during
training. With better computational resources, we would be
able to train the car to perform better on curved roads and
drive for a longer time without crashing.

Fig. 10. Change in loss of model while training

2) DQN City Environment Agent: An important objective
was observing the performance of our agent in an urban
environment. To do this we used the AirSim City environment
in which we had previously applied our IL algorithm. This
gave us a pre-built simulation environment with roads and
obstacles. Unfortunately as this environment is 3rd party,
we did not have access to the editor files and could not
customize them. This left us with a set start point for the
simulation which spawned the car next to a roundabout. The
model we implemented was to drive round the roundabout
without crashing. For this objective, Microsoft Cognitive

Toolkit (CNTK) was used, transforming coordinates to polar
coordinates with the center of the roundabout as the origin.
We built a reward function which would allow the agent to
navigate the roundabout, this reward function was made up
of multiple factors:

• Minimum distance from the roundabout road to the car
center, the car was penalized and reset for going over a
threshold distance from the roundabout road center.

• The speed of the car was used, a faster speed increases
the reward and if the car goes below a minimum speed,
it would incur a penalty and the car would be reset.

• The angle between the car direction and tangent of the
roundabout at this point which rewards the agent if it is
steering in the correct direction.

The epsilon greedy decay strategy was optimized, initially
using a linearly decreasing function to move from a fully
exploring agent to a fully exploiting agent. Employing an
exponentially decreasing strategy produced more satisfactory
results. The reason we suspect this was the case as when the
agent is purely exploring, the mean result is driving straight
as there is an equal probability of turning left or right. This
by nature of the roundabout curve means the model learns
simply to turn left regardless of input state. As the model
reduces the proportion of exploration actions, it begins to
turn left (to go round the roundabout). The model would
eventually turn left too far and reset because it would stray
too far from the circumference. The exponentially decaying
strategy slows the rate of learning the longer the algorithm
has been running, so the agent is exploring for more iterations
when it is already turning too far left. A replay buffer was
also used in this method so the model could sample the
last 50000 iterations and select a minibatch to relearn from
previous states it had seen.

Fig. 11. DQN roundabout CNN architecture

A very simple architecture was used for this model con-
sisting of 1 hidden layer in 3 dense layers. This was used as
the model inputs were 3 floating point numbers rather than
an image and the output was steering actions with different
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accelerations. This allowed us to iterate training quickly and
tune hyperparameters to achieve a working model.

Using this strategy the model we trained after 2 hours,
60000 iterations and 453 episodes, the agent could navigate
the roundabout reasonably well without being reset. The
driving however was quite jerky, this issue could be dealt
with by applying a reward for smooth driving.

3) DQN Custom Environment Agent: One experiment with
RL involved creating custom environments and objectives
where we could train our model. We used Unreal Editor 4.24
to create two environments, the first is a boxed landscape
with cone objects placed at various locations. The second
was another boxed landscape, instead of cones, with moving
pedestrians. The idea of these environments was to train an
agent to navigate without crashing into the objects.

The models we trained used both OpenAI Gym [16]
and OpenAI Baselines [17]. Gym is a toolkit available
for developing and comparing RL algorithms. The reward
function of this was purely based on distance with a
penalty applied for crashing into any objects. We used a
multi-layer perceptron architecture provided by the Deep q
agent in OpenAI Baselines with 64 hidden layers, the model
architectures can be seen in Figure 12. After two hours of
training in the static environment, the car seemed to learn to
avoid objects quite well from the depth perspective inputs.
Initially our model kept on looping in circles effectively an
optimal solution which allows it to infinitely drive with no
collision by steering one way. With this result unsatisfactory,
we imposed a penalty for the same repeated action more than
10 times in a row. The car stopped driving in circles and did
learn to avoid the obstacles well.

The next experiment involved training the model in the
environment with moving pedestrians and applying the YOLO
closeness metric on each side of the image as an input. The
results for this experiment did not show the agent being able
to avoid pedestrians. Quite often when the car is stationary
after respawning a pedestrian collides and the simulation
is reset with very little distance covered, the agent cannot
possibly learn anything from these false starts. Even after
more than two hours of training, the pedestrians were hit
quite frequently. The agent struggles to accurately predict the
path of pedestrians and, relative to the car, their motion is
quite fast. Another issue with this environment and model
is when a collision is caused by pedestrians walking into
the side of the car. It is a near impossible task for the car
to evade pedestrians given the only camera view used was
forward facing. With a longer training time, additional camera
views and more hyperparameter tuning, perhaps we would
see further progress with this objective.

The models used and cumulative reward function is shown
in figures 12 and 13. As we can see for the static environment
the reward function seems to be increasing with iteration

Fig. 12. DQN multi layer perceptron architectures for static and pedestrian
models

Fig. 13. Cumulative reward for static and pedestrian environments

however this effect is not clear in the pedestrian environment.

E. Imitation Learning Vs Reinforcement Learning

Both IL and RL are methods which can be applied for
self driving objectives. In RL, the agent learns online while
acting through trial and error. It tries different actions to see
which one yields the best rewards and uses that as a basis to
improve its policy. In IL, the agent learns from demonstration
in a supervised way. Although there are no rewards, it learns
from the recorded input of someone driving and creates a
policy to imitate those actions. In this sense, a RL agent could
theoretically achieve optimal results with the task. An IL agent
may not always be optimal, it can only become as good as the
human which teaches it the task. It can also emulate different
styles of driving depending on who it is learning from. One
advantage of IL is that the learning can be done offline as
CNN can be trained by we did in a Python notebook, RL
however must be done in an environment where the state and
actions are to be simulated. We suspect that to achieve full
autonomous driving, there are aspects of both the methods
which will be useful for an agent.

VI. RESULTS

We have successfully implemented computer vision, IL and
RL in our simulation environment, AirSim. Object detection
was performed, comparing two computer vision techniques,
Mask R-CNN and YOLO with YOLO performing better to
provide bounding boxes identifying cars and pedestrians.
Using a pre-trained U-Net architecture, transfer learning
allowed us to produce a reasonable segmentation mask of the
road in front of the car. Building on successive IL models,
both using behavioral cloning, we implemented our first
objective, getting the car to drive straight in the middle
lane. Additional tasks were tackled using RL, specifically
DQN with varying architectures allowing the agent to learn
to navigate for different objectives such as driving in a
neighborhood, around a roundabout and avoiding obstacles.
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To see more results and demonstration of the outputs from
models described in this paper refer to the Methods section
in the EDD.

VII. CONCLUSION AND FUTURE TARGETS

The main objective of the project was to train an
autonomous driving agent in a simulation environment,
tackling tasks faced by the autonomous driving community.
This objective was achieved through a variety of state of the
art machine learning methods which allow control in different
environments.

IL gave reasonable performance for driving in the middle
lane. Although the agent oscillated between the lane lines
this is representative of the training data fed into the model.
Given the dataset which our model was trained on consisted
of an hour of simulation driving, as is true for many deep
learning tasks, the addition of more training data would
naturally improve the model. With access to large datasets
of cars driving on the roads in real life, behavioral cloning
using a model similar to that presented in this paper would
be a method capable of achieving lane control.

DQN was used for a 4 objectives with variable levels of
success. The performance depended on factors such as model
architecture, hyperparameters, simulation parameters, training
times to name a few. While our results were encouraging, the
performance of all of our DQN efforts fall short of human
level behavior. To improve this effort and to use more robust
approaches, more powerful GPUs are required with machines
which allow training for multiple days. This would have
allowed us to go beyond coordinate based approaches which
assume GPS or LiDAR data with set paths mapped out in
advance.

Future work to build on the foundations laid in this paper
would be to integrate multiple objectives into one agent. If
the agent could detect which scenario applies at a particular
time, it would deploy one of the trained models to achieve
this objective. For example, if the agent following the middle
lane came to a roundabout it could switch to the roundabout
objective model and navigate that way until it exited. This
is necessary to achieve full self driving. In addition, path
planning, an important part of the autonomous driving
pipeline could be tackled with path planning algorithms in
conjunction with the model switching approach.

It is important to note that we have only scratched the
surface of the potential use of simulation in autonomous
driving research. The number of problems encountered in
driving that we can replicate is enormous and the scope
of our project as it developed was exciting. We hope our
solutions aptly reflect the real work done in the autonomous
driving research community and that these approaches are

transferable from simulation to the real world.
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